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Abstract: Business processes are an important instrument for understanding and im-
proving how companies provide goods and services to customers. Therefore, many
companies have documented their business processes well, often in the Event-driven
Process Chains (EPC). Unfortunately, in many cases the resulting EPCs are rather
complex, so that the overall process logic is hidden in low level process details. This
paper proposes abstraction mechanisms for process models that aim to reduce their
complexity, while keeping the overall process structure. We assume that functions
are marked with efforts and splits are marked with probabilities. This information is
used to separate important process parts from less important ones. Real world process
models are used to validate the approach.

1 Introduction

Business process modeling plays an important role in the design of how companies provide

services and products to their customers. To improve the understanding of processes and

to enable their analysis, business processes are represented by models [Dav93, Wes07].

Business process models consist of automated and/or manual activities executed by an

employee with a support of an information system. The goal of a process model is to

provide a basis for defining and optimizing working procedures. Often achievement of

this goal is traded for the cost of complex, “wallpaper-like” models, that tend to capture

every small detail and exceptional case. Fine granular process models distract attention of

a reader from the overall process logic by exhaustive details.

This paper proposes abstraction mechanisms that transform detailed process models in

less detailed ones that still reflect the overall process logic. We do not assume any limita-

tions on the initial process model control flow structure: proposed process model abstrac-

tion mechanisms implicitly define a set of addressed control flow patterns. The results

are developed for EPC [KNS92, STA05]. However, they can be adapted to any graph-

structured process modeling notation, for instance the Business Process Modeling Nota-

tion (BPMN) [BPM04].

The basic principle of the abstraction methodology proposed in this paper can be described

as follows. Starting with a complex, detailed process model, a number of abstractions are

performed. Formally, each abstraction takes a process model as input and generates a pro-

cess model as output where an abstracted process fragment is replaced by a new one. The



new process fragment gives a generalized view of the substituted process fragment. Each

individual abstraction leads to process details become concealed in a resulting process

model.

The presented results were obtained in a joint research project with the health insurance

company. Operational processes of the company are captured in about 4 000 EPCs. De-

tailed models lead to information overload creating a demand for abstracted process mod-

els. The models are enriched with information about the effort required to complete each

function of each process and probabilities of connection transitions from source to the tar-

get. The project partner uses proprietary tools to calculate the number of employees and

their roles to enact all process instances that need to be executed. Since process models

are the basis for head count estimations, an overall process effort after abstractions must

remain unchanged.

This paper is structured as follows: Section 2 makes a survey on related work. Afterwards,

the fundamental concepts are explained in Section 3. Elementary abstraction mechanisms

are presented in Section 4. Concluding remarks complete this paper.

2 Related Work

The abstraction approach discussed in this paper bases on the set of elementary abstraction

rules. Each rule specifies how a process model fragment can be transformed in order

to simplify the process model. Graph transformation rules are well studied in literature

[DJVVA07, LS03, MVD+08, SO00, VVL07]. These studies introduce graph reduction

rules in order to facilitate analysis of process model soundness by means of state space

reduction. An approach proposed in [SO00] presents rules facilitating soundness analysis

of process models captured in the notation proposed by Workflow Management Coalition.

The given set of rules can not analyze process models containing loops. [DJVVA07] and

[MVD+08] specify reduction rules for structural analysis of EPCs. In [BRB07] the authors

use graph reduction rules to create customized process views. Two kinds of rules are

proposed: reduction rules and aggregation rules. It should be noticed that the named

approaches do not define how such properties as process execution effort or execution cost

can be preserved during transformations.

Cardoso et al. in [CMSA02] propose an approach for estimation of workflow proper-

ties (e.g., execution cost, execution time, and reliability) using the properties of activities

constituting the process. The approach enables analysis of block-structured process mod-

els containing sequences, XOR blocks, AND blocks, and structured loops. However, the

approach does not address processes which contain OR blocks and which are not block-

structured.

A statistical approach to simplification of process models mined from execution logs is

presented in [GA07]. It exploits various metrics for judging about the significance of

process model elements and enables aggregation and reduction of insignificant elements.

However, the approach does not address particularities of EPC and properties of a process,

such as process effort, are not preserved.



The presented outlook of the related work witnesses: there is no comprehensive approach

which solves the task discussed in this paper. Several approaches provide a solid basis of

reduction rules, capable of handling sophisticated graph-structured processes. However,

these approaches do not allow estimating process properties, such as effort or cost. On the

other hand, there is an approach (cf. [CMSA02]) supporting process properties estima-

tion, but it is limited to block-structured processes without OR blocks. Therefore, there

is a lack of approach capable of handling graph-structured process models, i.e., providing

appropriate graph transformation rules and rules for estimating process properties. In this

study we target this challenge.

3 Fundamentals

This section introduces fundamentals of the approach—formalization of the extended for

our purposes variant of event-driven process chains. There exist several works on formal-

ization of EPC [Aal98, MA07, Wes07]. In this paper we use the formal definition proposed

in [Wes07] and extend it by introducing concepts of function efforts and probabilities of

connection transitions.

Definition 1 A tuple (E,F,C,A, t, er, pr) is an extended EPC if:

• E is a set of events, E 6= ∅

• F is a set of functions, F 6= ∅

• C is a set of connectors

• N = E ∪ F ∪ C is a set of nodes, such that E, F , and C are pairwise disjoint

• A ⊆ N ×N is a set of connections

• t : C → {and, or, xor} is a mapping assigning connector type to a connector

• er : F → R
+ is a mapping associating a function with an effort required to complete

it (effort is measured in time units, e.g., minutes or hours)

• pr : A → [0, 1] is a mapping assigning transition probability to a connection

• (N,A) is a connected graph

• Each function has exactly one incoming and one outgoing connection.

• There is at least one start event and at least one end event. Each start (end) event has

exactly one outgoing (incoming) connection and no incoming (outgoing) connec-

tions. All the other events have exactly one incoming and one outgoing connections.

• Each event can only be followed (possibly via a connector) by a function and each

function can only be followed (possibly via a connector) by an event.
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Figure 1: Real world example of the EPC fragment enriched with probabilities and efforts

• There is no cycle that consists of connectors only.

• No event is followed by an OR or a XOR split connector.

In order to address regions of an EPC we define an EPC process fragment as a connected

subgraph of the (N,A) graph.

We assume that process models follow proposed formal EPC definition. However, this is

not always true, e.g., in the investigated process models, events within a sequence of func-

tions might be omitted. If this is the case, we assume a preprocessing step that modifies

EPC to conform to proposed definition, i.e., missing events are automatically inserted.

To continue the discussion we need to define several auxiliary concepts.

Definition 2 Mean occurrence number of a node is the mean number that the node will

occur in a process instance.

Definition 3 Absolute effort of a process function (ea) is the mean effort contributed to

the execution of the function in a process instance: ea : F → R
+. Absolute effort can be

obtained as the relative effort multiplied by the mean occurrence number of the function.

Definition 4 Process absolute effort (epa) is the mean effort required to execute a process

instance: epa : P → R
+, where P is a set of process models. Process absolute effort can

be obtained as the sum of absolute efforts of process functions.

Figure 1 shows the EPC fragment and illustrates presented concepts. Here, all the outgoing

connections of the exclusive or split are supplied with the relative probabilities that sum up

to one. All the other connections are assumed to have the relative probability of one. Each

function is enriched with the relative and absolute (visualized in italic type) efforts given

by the time interval in minutes that a worker needs to perform a function. For instance,

the function “Contact a representative” has the relative effort of one minute meaning that



it is expected to take one minute of worker’s time once reached in a process instance. On

average, this function requires 1 · 0.92 = 0.92 minutes in every process instance which

constitutes the absolute effort of the function. The absolute effort is obtained under the

assumption that the process fragment is reached only once in a process instance with the

probability of one. Semantically the effort concept is close to the concept of cost. For

instance, if two activities are executed in parallel their total effort is the sum of efforts of

both activities. In this study we do not address the waiting time between activities.

4 Elementary Abstractions

In this section elementary abstractions are presented. Elementary abstractions define how

certain types of process fragments are generalized. The abstractions can be applied in any

order or frequency, provided that a process model contains the structures required for a

particular abstraction. This also assumes that any function can be the result of a prior

abstraction.

4.1 Dead End Abstraction

Modeling of exceptional and alternative control flows in EPCs usually results in “spaghetti-

like” process models with lots of control flow branches leading to multiple end events. As

the primary goal of abstraction is to reduce excessive process details, it is of high impor-

tance to be capable of eliminating such flows, leaving only the essential information. To

address this problem an elementary abstraction called dead end abstraction is introduced.

Further discussion requires a precise definition of the term dead end.

Definition 5 An EPC process fragment is a dead end if it consists of a function, followed

by a XOR split connector, followed by an event, followed by a function, followed by an

end event. The XOR split connector has only one incoming connection.

Figure 2 illustrates the mechanism of the dead end abstraction. On the left side the initial

process fragment containing a dead end is provided. Functions f0 and fk, events ek and

ek+1 and the XOR split connector constitute the dead end. The XOR split has k outgoing

branches and after the abstraction the k-th branch is removed. On the right side of Figure 2

the abstracted process is presented.

As a result of abstraction, a XOR split branch which belongs to a dead end is completely

removed from a process model. Function f0 is replaced by an aggregating function fD.

An aggregating function in dead end abstraction has the following semantics: upon an oc-

currence of function fD in a process, function f0 is executed. Afterwards, function fk may

be executed. The probability that function fk occurs is the probability of reaching function

fk from f0 in the initial process. If function fk is executed the branch is terminated and

fD is not left. Otherwise, the execution of the branch continues.
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Figure 2: Dead end abstraction

The relative effort of an aggregating function takes into account the relative efforts of

functions f0 and fk and the probability of fk occurrence in fD:

er(fD) = er(f0) + er(fk) · pr((f0, xor)) · pr((xor, ek)) · pr((ek, fk)).

The relative probability of reaching a XOR split connector from function fD is the proba-

bility of reaching the XOR connector from function f0 and not reaching function fk in the

initial process:

pr((fD, xor)) = pr((f0, xor)) · (1− pr((xor, ek)) · pr((ek, fk))).

As a result of a dead end abstraction, the relative probability of entering the aggregating

function is greater than the relative probability of leaving it: once function fk is executed,

the branch is terminated. Therefore, to find a probability of reaching one node from an-

other, it is always required to take into account probabilities of all intermediate transitions.

Finally, we normalize the probabilities of the XOR split outgoing connections so that the

following statements hold:

• the probabilities of reaching events ei (i = 1, 2, . . . , k − 1) from function fD equal

to the probabilities of reaching ei from f0 in the initial process

• the sum of the probabilities of the XOR outgoing connections is one.

The normalized relative probabilities are obtained in the following way:

p′r((xor, ei)) =
pr((xor, ei))

1− pr((xor, ek))
.

If a XOR split has only two outgoing connections in the initial process it is possible to

omit the XOR split after dead end abstraction.
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Figure 3: Sequential abstraction

4.2 Sequential Abstraction

Real world business process models of high fidelity often contain sequences of activities,

which are captured in EPCs as sequences of functions. Within a sequential abstraction a

sequence of functions and events is replaced by one function—an aggregating function.

An aggregating function has a coarse granularity and brings a process model to a higher

level of abstraction.

Definition 6 An EPC process fragment is a sequence if it is formed by a function, fol-

lowed by an event, followed by a function.

Figure 3 exemplifies the concept of sequential abstraction. Functions f1, f2, and event e1
form a sequence. As a result of sequential abstraction, a sequence is replaced by an aggre-

gating function fS . Semantics of the aggregating function is the following: function f1 is

executed and afterwards function f2 occurs with the probability equal to the probability of

reaching function f2 from f1 in the initial process.

The relative effort of an aggregating function depends on the relative efforts of functions

f1 and f2 and the probability that f2 occurs in fS : er(fS) = er(f1)+er(f2) ·pr((f1, e1)) ·
pr((e1, f2)).

The relative probability of an aggregating function incoming connection is

pr(e0, f1). The relative probability of an aggregating function outgoing connection is

defined as pr((fS , e2)) = pr(f1, e1) · pr(e1, f2) · pr(f2, e2)



4.3 Block Abstraction

To model parallelism or to show that a decision is made in a process, a modeler encloses

several branches of control flow between split and join connectors. Depending on the de-

sired semantics, an appropriate connector type is selected: AND, OR, or XOR. A process

fragment enclosed between connectors has a precise and self-contained business seman-

tics. Therefore, the fragment can be replaced by one function of coarse granularity. Block

abstraction enables this operation. To define block abstraction we use a notion of a path

in EPC—a sequence of nodes such that for each node there exists a connection to the next

node in the sequence.

Definition 7 An EPC process fragment is a block if:

• it starts with a split and ends with a join connector of the same type

• all paths from the split connector lead to the join connector

• there is at most one function on each path

• each path between the split and the join contains only events and functions

• the number of the outgoing connections of the split connector equals the number of

the incoming connections of the join connector

• the split connector has one incoming connection and the join connector—one out-

going.

Figure 4 shows an example of a block. After block abstraction, an original process frag-

ment is replaced by an event, followed by an aggregating function, followed by another

event (events are added to assure that a new EPC is well-formed). The approach introduced

in this paper supports AND, OR, and XOR connectors. Semantics of the aggregating func-

tion conforms to the semantics of the abstracted block and depends on the block type. In

case of a XOR block the aggregating function (named fB) means that only one function

of the abstracted fragment is executed.

The relative effort of an aggregating function is independent of a block type and considers

the relative efforts of functions fi and probabilities of reaching these functions from a split

connector: er(fB) =
∑k

i=1
er(fi) · pr((c1, ei1)) · pr((ei1, fi)), where k is the number of

split outgoing connections.

The relative probability of reaching event e1 from f0 equals to the relative probability of

reaching node c1 from its predecessor. The relative probabilities of connections (e1, fB)
and (e2, fk+1) are one.

A method for px (cf. Figure 4) estimation is block type specific. Let us introduce prob-

ability pi—the probability that a control flow reaches the join connector from the split

connector on the i-th branch. Then the probability of reaching e2 from fB in an AND

block is the probability that control flow on every branch reaches the join connector

pr((fB , e2)) =
∏k

i=1
pi.
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Figure 4: Block abstraction

For a XOR block this probability equals to the probability that the control flow on any

branch reaches the join connector pr((fB , e2)) =
∑k

i=1
pi.

In case of an OR block where all probabilities of leaving functions are equal to one, prob-

ability of leaving the block is also one. In general case computation of the probability of

leaving an OR block requires prior derivation of probabilities for selecting each branch

combination of an OR block. This information can not be obtained solely based on prob-

abilities of executing separate branches.

4.4 Loop Abstraction

It is a common situation when a task (or a set of tasks) in a business process is iterated

to complete the process. In a model, capturing such a process, a task (or a set of tasks)

is put into a loop construct. EPC enables loop modeling by means of control flow. Wide

application of loops by modelers makes support of abstraction from loops an essential

part of the approach. Therefore, we introduce one more elementary abstraction—loop

abstraction. Let us define what kind of process fragment is considered to be a loop.

Definition 8 An EPC process fragment is a loop if:

• it starts with a XOR join connector and ends with a XOR split connector

• the process fragment does not contain any other connectors

• the XOR join has exactly one outgoing and two incoming connections
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• the XOR split has exactly one incoming and two outgoing connections

• there is exactly one path from the split to the join and exactly one path from the join

to the split

• there is at least one function in the process fragment.

The whole process fragment corresponding to a loop is replaced after the abstraction by

one aggregating function fL (see Figure 5). An extra event e0 is inserted between the

functions f0 and fL in order to obtain well-formed EPC. An aggregating function states

that functions f1 and f2 are executed iteratively. The definition allows either f1 or f2 to be

missing. Information about the number of loop iterations is hidden inside the aggregating

function and is reflected in its relative effort and connections relative probabilities in the

abstracted process model.

The relative effort of an aggregating function can be found as:

er(fL) = pr((xorj , e1)) · pr((e1, f1)) ·

·
1

1− p
· (er(f1) + er(f2) · pr((e1, xors)) · pl · pr((e2, f2))),

where p = pr((xorj , e1)) · pr((e1, f1)) · pr((e1, xors)) · pr((e2, f2)) · pr((f2, xorj)) · pl
and pl = pr((xors, e2)).

After loop abstraction, the probability of reaching e0 from f0 equals the probability of

reaching the XOR join from function f0 in the initial process. The probability of reach-

ing aggregating function fL from event e0 is one. Probability of leaving the aggregating

function (denoted with px in Figure 5) is the probability of leaving a loop in the initial
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Figure 6: Original (a) and abstracted (b) process models (unreadability intended)

process. Since we assume that probabilities of leaving functions are not always one, it is

possible that the control flow does not leave a loop in a process instance. The probability

that a loop is stopped between xorj and xors is p
path
stop = 1− pr((xorj , e1)) · pr((e1, f1)) ·

pr((f1, xors)). The control flow stops on the path between xors and xorj with probability

p
loop
stop = 1− pr((e2, f2)) · pr((f2, xorj)).

Thus, the relative probability of leaving an aggregating function equals to:

pr((fL, e3)) = 1−
1

1− p
· (ppathstop + (1− p

path
stop ) · pl · p

loop
stop).

4.5 Real World Example

In Figure 6 we present an example of a real world process model from our project partner

(cf. Figure 6.a) and the result of its abstraction using presented elementary abstractions

(cf. Figure 6.b). The initial process model is composed of 333 nodes: 130 functions,

137 events, and 66 connectors. After abstraction, the number of process model nodes

was reduced to 167: 44 functions, 82 events, and 41 connectors. The overall reduction of

process nodes is near 50%.

The proposed abstractions allow a company to deal with coarse grained functions in busi-

ness processes, while keeping the overall process logic intact. In terms of organization and

management, these coarse grained functions (with effort of minutes rather than of seconds)



facilitate process improvement on a higher level. Tedious discussions on low granularity

functions are no longer required. Instead, process participants can apply improvements

within the functions, keeping the overall process logic in sync with the process model.

5 Conclusions

In this paper the elementary abstractions: dead end, sequential, block, and loop abstraction

were proposed. In the beginning we have described the challenges of our partner, which

they came across managing their process models and which motivated this work. Proposed

abstractions can be applied to an arbitrary graph-structured process model. Application of

each elementary abstraction aggregates process fragment and brings model to a higher

abstraction level. To the limitation of the approach one can count the fact that not an

arbitrary model can be abstracted to one function, if such a behavior is desired. Also,

proposed elementary abstractions only address preserving of process effort property (as in

Definition 3), as it is the primary requirement of the project partner. However, the approach

can be easily extended for recalculation of other properties as in [CMSA02].

Theoretical results of this work are used in the implementation of a tool prototype. The

task of the tool is to provide automatic abstraction of process models captured in EPC. The

tool supports all types of elementary abstractions proposed in this paper.

As the future steps we identify the task of developing additional elementary abstractions.

This implies theoretical foundations of abstraction mechanisms as well as their prototyp-

ical implementation. Also, rules for composition of elementary abstractions (application

order strategies) need to be studied. An important finding will be to show which class of

EPCs can be abstracted to one function by a given set of elementary abstractions. It is also

of great interest to learn which set of elementary abstractions is capable of reducing an

EPC to one function.
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